# 10 问 10 答,带你快速入门前端算法

原创 前端瓶子君 前端瓶子君 2020-04-11

# 引言

各位大佬好,本节是前端进阶算法集训营半月的总结与回顾👇,主要内容包括:

以及题目:

  • 图解leetcode88:合并两个有序数组[1]
  • 字节&leetcode1:两数之和[2]
  • 腾讯:数组扁平化、去重、排序[3]
  • leetcode349:给定两个数组,编写一个函数来计算它们的交集[4]
  • leetcode146:设计和实现一个LRU(最近最少使用)缓存机制[5]
  • 阿里算法题:编写一个函数计算多个数组的交集[6]
  • leetcode21:合并两个有序链表[7]
  • 有赞&leetcode141:判断一个单链表是否有环[8]
  • 图解leetcode206:反转链表[9]

下面进入正文吧👇

# 一、前端进阶算法1:如何分析、统计算法的执行效率和资源消耗?

好的数据结构与算法能够大大缩短代码的执行时间与存储空间,那么我们如何去衡量它喃?这节就主要介绍算法性能的衡量指标—复杂度分析。

复杂度可分为:

  • 时间复杂度
  • 空间复杂度

# 1. 如何表示算法复杂度?

通常采用 大 O 表示法 来表示复杂度。它并不代表真正的执行时间或存储空间消耗,而是表示代码执行时间随数据规模增长的变化趋势(时间复杂度)或存储空间随数据规模增长的变化趋势(空间复杂度),所以,也叫作渐进时间(或空间)复杂度(asymptotic time complexity),简称时间(或空间)复杂度

# 2. 常见复杂度

多项式量级:

  • 常量阶:O(1):当算法中不存在循环语句、递归语句,即使有成千上万行的代码,其时间复杂度也是Ο(1)
  • 对数阶:O(logn): 简单介绍一下
let i=1;
while (i <= n)  {
  i = i * 2;
}
  • 每次循环 i 都乘以 2 ,直至 i > n ,即执行过程是:20、21、22、…、2k、…、2x、 n 所以总执行次数 x ,可以写成 2x = n ,则时间复杂度为 O(log2n) 。这里是 2 ,也可以是其他常量 k ,时间复杂度也是:O(log~3~n) = O(log32 * log2n) = O(log2n)
  • 线性阶:O(n)
  • 线性对数阶:O(nlogn)
  • 平方阶、立方阶、….、k次方阶:O(n2)、O(n3)、…、O(nk)

非多项式量阶:

  • 指数阶:O(2n)
  • 阶乘阶:O(n!)

# 3. 复杂度的划分

以时间复杂度为例,时间复杂度受数据本身影响,还分为:

  • 最好时间复杂度:在最理想的情况下,执行这段代码的时间复杂度
  • 最坏时间复杂度:在最糟糕的情况下,执行这段代码的时间复杂度
  • 平均时间复杂度:所有情况下,求一个平均值,可以省略掉系数、低阶、常量

详情:前端进阶算法1:如何分析、统计算法的执行效率和资源消耗?[10]

# 二、前端进阶算法2:从Chrome V8源码看JavaScript数组(附赠腾讯面试题)

# 1. JavaScript 中,数组的应用

let arr = [1, 2, 3]

它的这种特定的存储结构决定了:

优点

  • 随机访问:可以通过下标随机访问数组中的任意位置上的数据

缺点

  • 对数据的删除和插入不是很友好

查找: 根据下标随机访问的时间复杂度为 O(1);

插入或删除: 时间复杂度为 O(n);

在 JavaScript 中的数组几乎是万能的,它不光可以作为一个普通的数组使用,可以作为栈或队列使用。

数组:

let array = [1, 2, 3]

栈:

let stack = [1, 2, 3]
// 进栈
stack.push(4)
// 出栈
stcak.pop()

队列:

let queue = [1, 2, 3]
// 进队
queue.push(4)
// 出队
queue.shift()

# 2. JavaScript 中,数组的独特之处

我们知道在 JavaScript 中,可以在数组中保存不同类型值,并且数组可以动态增长,不像其它语言,例如 C,创建的时候要决定数组的大小,如果数组满了,就要重新申请内存空间。这是为什么喃?

JavaScript 中, JSArray 继承自 JSObject ,或者说它就是一个特殊的对象,内部是以 key-value 形式存储数据,所以 JavaScript 中的数组可以存放不同类型的值。它有两种存储方式,快数组与慢数组,初始化空数组时,使用快数组,快数组使用连续的内存空间,当数组长度达到最大时,JSArray 会进行动态的扩容,以存储更多的元素,相对慢数组,性能要好得多。当数组中 hole 太多时,会转变成慢数组,即以哈希表的方式( key-value 的形式)存储数据,以节省内存空间。

具体快慢数组、动态扩容前往:前端进阶算法2:从Chrome V8源码看JavaScript数组(附赠腾讯面试题)[11]

# 三、前端进阶算法3:从浏览器缓存淘汰策略和Vue的keep-alive学习LRU算法

# 1. 浏览器缓存淘汰策略

当我们打开一个网页时,例如 https://github.com/sisterAn/JavaScript-Algorithms ,它会在发起真正的网络请求前,查询浏览器缓存,看是否有要请求的文件,如果有,浏览器将会拦截请求,返回缓存文件,并直接结束请求,不会再去服务器上下载。如果不存在,才会去服务器请求。

其实,浏览器中的缓存是一种在本地保存资源副本,它的大小是有限的,当我们请求数过多时,缓存空间会被用满,此时,继续进行网络请求就需要确定缓存中哪些数据被保留,哪些数据被移除,这就是浏览器缓存淘汰策略,最常见的淘汰策略有 FIFO(先进先出)、LFU(最少使用)、LRU(最近最少使用)。

LRU ( Least Recently Used :最近最少使用 )缓存淘汰策略,故名思义,就是根据数据的历史访问记录来进行淘汰数据,其核心思想是 如果数据最近被访问过,那么将来被访问的几率也更高 ,优先淘汰最近没有被访问到的数据。

画个图帮助我们理解 LRU:

图片

# 2. Vue 的 keep-alive 源码解读

keep-alive 缓存超过 max 时,使用的缓存淘汰算法就是 LRU 算法,它在实现的过程中用到了 cache 对象用于保存缓存的组件实例及 key 值,keys 数组用于保存缓存组件的 key,当 keep-alive 中渲染一个需要缓存的实例时:

  • 判断缓存中是否已缓存了该实例,缓存了则直接获取,并调整 keykeys 中的位置(移除 keyskey ,并放入 keys 数组的最后一位)
  • 如果没有缓存,则缓存该实例,若 keys 的长度大于 max (缓存长度超过上限),则移除 keys[0] 缓存

主要实现LRU代码:

// --------------------------------------------------
// 下面就是 LRU 算法了,
// 如果在缓存里有则调整,
// 没有则放入(长度超过 max,则淘汰最近没有访问的)
// --------------------------------------------------
// 如果命中缓存,则从缓存中获取 vnode 的组件实例,
// 并且调整 key 的顺序放入 keys 数组的末尾
if (cache[key]) {
  vnode.componentInstance = cache[key].componentInstance;
  // make current key freshest
  remove(keys, key);
  keys.push(key);
}
// 如果没有命中缓存,就把 vnode 放进缓存
else {
  cache[key] = vnode;
  keys.push(key);
  // prune oldest entry
  // 如果配置了 max 并且缓存的长度超过了 this.max,还要从缓存中删除第一个
  if (this.max && keys.length > parseInt(this.max)) {
    pruneCacheEntry(cache, keys[0], keys, this._vnode);
  }
}

源码详情:前端进阶算法3:从浏览器缓存淘汰策略和Vue的keep-alive学习LRU算法[12]

# 四、前端进阶算法4:链表原来如此简单(+leetcode刷题)

# 1. 图解链表

常用的链表类型有单链表、双链表以及循环链表,其中 next 为后继指针,指向它的后继节点,prev 为前驱指针,指向它的前驱节点。

单链表

图片

双链表

图片

循环链表

图片

# 2. 链表复杂度一览表

单链表

操作方法 时间复杂度 说明
append O(n) 在链表尾部追加节点
search O(n) 在链表中查找任意元素
insert O(n) 在链表中任意位置插入一个节点
remove O(n) 删除链表中任意位置的一个节点
searchNext O(1) 查找某节点的后继节点
insertNext O(1) 在某一节点后插入一个节点(后继节点)
removeNext O(1) 在某一节点后删除一个节点(后继节点)

双链表

操作方法 时间复杂度 说明
search O(n) 在链表中查找任意元素
insert O(n) 在链表中任意位置插入一个节点
remove O(n) 删除链表中任意位置的一个节点
searchNext 或 searchPre O(1) 查找某节点的后继节点或前驱节点
insertNext 或 insertPre O(1) 插入某节点的后继节点或前驱节点
removeNext 或 removePre O(1) 删除某节点的前驱节点或后继节点

循环链表

操作方法 时间复杂度 说明
search O(n) 在链表中查找任意元素
insert O(n) 在链表中任意位置插入一个节点
remove O(n) 删除链表中任意位置的一个节点
searchNext O(1) 查找某节点的后继节点
insertNext O(1) 在某一节点后插入一个节点(后继节点)
removeNext O(1) 在某一节点后删除一个节点(后继节点)

详情:前端进阶算法4:链表原来如此简单(+leetcode刷题)[13]

# 五、图解leetcode88:合并两个有序数组

# 1. 题目

给你两个有序整数数组 nums1nums2,请你将 nums2 合并到 nums1 中,使 num1 成为一个有序数组。

说明:

初始化 nums1nums2 的元素数量分别为 mn 。你可以假设 nums1 有足够的空间(空间大小大于或等于 m + n )来保存 nums2 中的元素。

示例:

输入:
nums1 = [1,2,3,0,0,0], m = 3
nums2 = [2,5,6],       n = 3

输出: [1,2,2,3,5,6]

# 2. 解答

解题思路:

图片

  • nums1nums2 有序,若把 nums2 全部合并到 nums1 ,则合并后的 nums1 长度为 m+n

  • 我们可以从下标 m+n-1 的位置填充 nums1 ,比较 nums1[len1]nums2[len2] 的大小,将最大值写入 nums1[len],即

    • nums1[len1]>=nums2[len2]nums1[len--] = nums1[len1--] ,这里 -- 是因为写入成功后,下标自动建议,继续往前比较
    • 否则 nums1[len--] = nums2[len2--]
  • 边界条件:

    • len1 < 0,即 len2 >= 0 ,此时 nums1 已重写入, nums2 还未合并完,仅仅需要将 nums2 的剩余元素(0…len)写入 nums2 即可,写入后,合并完成
    • len2 < 0,此时 nums2 已全部合并到 nums1 ,合并完成

时间复杂度为 O(m+n)

代码实现:

var merge = function(nums1, m, nums2, n) {
    let len1 = m - 1,
        len2 = n - 1,
        len = m + n - 1
    while(len2 >= 0) {
        if(len1 < 0) {
            nums1[len--] = nums2[len2--]
            continue
        }
        nums1[len--] = nums1[len1] >= nums2[len2] ? nums1[len1--]: nums2[len2--]
    }
};

# 3. 更多解答请看:图解leetcode88:合并两个有序数组[14]

# 六、字节&leetcode1:两数之和

# 1. 题目

给定一个整数数组 nums 和一个目标值 target ,请你在该数组中找出和为目标值的那 两个 整数,并返回他们的数组下标。

你可以假设每种输入只会对应一个答案。但是,你不能重复利用这个数组中同样的元素。

示例:

给定 nums = [2, 7, 11, 15], target = 9

因为 nums[0] + nums[1] = 2 + 7 = 9
所以返回 [0, 1]

# 2. 解答

解题思路:

  • 初始化一个 map = new Map()

  • 从第一个元素开始遍历 nums

  • 获取目标值与 nums[i] 的差值,即 k = target - nums[i] ,判断差值在 map 中是否存在

    • 不存在( map.has(k)false ) ,则将 nums[i] 加入到 map 中(key为nums[i], value为 i ,方便查找map中是否存在某值,并可以通过 get 方法直接拿到下标)
    • 存在( map.has(k) ),返回 [map.get(k), i] ,求解结束
  • 遍历结束,则 nums 中没有符合条件的两个数,返回 []

时间复杂度:O(n)

代码实现:

var twoSum = function(nums, target) {
    let map = new Map()
    for(let i = 0; i< nums.length; i++) {
        let k = target-nums[i]
        if(map.has(k)) {
            return [map.get(k), i]
        }
        map.set(nums[i], i)
    }
    return [];
};

# 3. 更多解答请看:字节&leetcode1:两数之和[15]

# 七、腾讯:数组扁平化、去重、排序

# 1. 题目

已知如下数组:var arr = [ [1, 2, 2], [3, 4, 5, 5], [6, 7, 8, 9, [11, 12, [12, 13, [14] ] ] ], 10];

编写一个程序将数组扁平化去并除其中重复部分数据,最终得到一个升序且不重复的数组

# 2. 答案:

var arr = [ [1, 2, 2], [3, 4, 5, 5], [6, 7, 8, 9, [11, 12, [12, 13, [14] ] ] ], 10]
// 扁平化
let flatArr = arr.flat(4)
// 去重
let disArr = Array.from(new Set(flatArr))
// 排序
let result = disArr.sort(function(a, b) {
    return a-b
})
console.log(result)
// [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14]

感谢 352800205 的补充:flat() 方法对node版本有要求,至少需要12.0以上

# 3. 更多解答请看:腾讯:数组扁平化、去重、排序[16]

# 八、leetcode349:给定两个数组,编写一个函数来计算它们的交集

# 1. 题目

给定两个数组,编写一个函数来计算它们的交集。

示例 1:

输入: nums1 = [1,2,2,1], nums2 = [2,2]
输出: [2]

示例 2:

输入: nums1 = [4,9,5], nums2 = [9,4,9,8,4]
输出: [9,4]

说明:

输出结果中的每个元素一定是唯一的。我们可以不考虑输出结果的顺序。

# 2. 答案

解题思路:

  • filter 过滤
  • Set 去重

代码实现:

var intersection = function(nums1, nums2) {
    return [...new Set(nums1.filter((item)=>nums2.includes(item)))]
};

# 3. 更多解答请看:leetcode349:给定两个数组,编写一个函数来计算它们的交集[17]

# 九、leetcode146:设计和实现一个LRU(最近最少使用)缓存机制

# 1. 题目

运用你所掌握的数据结构,设计和实现一个 LRU (最近最少使用) 缓存机制。它应该支持以下操作:获取数据 get 和写入数据 put

获取数据 get(key) - 如果密钥 ( key ) 存在于缓存中,则获取密钥的值(总是正数),否则返回 -1 。写入数据 put(key, value) - 如果密钥不存在,则写入数据。当缓存容量达到上限时,它应该在写入新数据之前删除最久未使用的数据,从而为新数据留出空间。

进阶:

你是否可以在 O(1) 时间复杂度内完成这两种操作?

示例:

LRUCache cache = new LRUCache( 2 /* 缓存容量 */ );

cache.put(1, 1);
cache.put(2, 2);
cache.get(1);       // 返回  1
cache.put(3, 3);    // 该操作会使得密钥 2 作废
cache.get(2);       // 返回 -1 (未找到)
cache.put(4, 4);    // 该操作会使得密钥 1 作废
cache.get(1);       // 返回 -1 (未找到)
cache.get(3);       // 返回  3
cache.get(4);       // 返回  4

# 2. 答案

基础解法:数组+对象实现

类 vue keep-alive 实现

var LRUCache = function(capacity) {
    this.keys = []
    this.cache = Object.create(null)
    this.capacity = capacity
};

LRUCache.prototype.get = function(key) {
    if(this.cache[key]) {
        // 调整位置
        remove(this.keys, key)
        this.keys.push(key)
        return this.cache[key]
    }
    return -1
};

LRUCache.prototype.put = function(key, value) {
    if(this.cache[key]) {
        // 存在即更新
        this.cache[key] = value
        remove(this.keys, key)
        this.keys.push(key)
    } else {
        // 不存在即加入
        this.keys.push(key)
        this.cache[key] = value
        // 判断缓存是否已超过最大值
        if(this.keys.length > this.capacity) {
            removeCache(this.cache, this.keys, this.keys[0])
        }
    }
};

// 移除 key
function remove(arr, key) {
    if (arr.length) {
        const index = arr.indexOf(key)
        if (index > -1) {
            return arr.splice(index, 1)
        }
    }
}

// 移除缓存中 key
function removeCache(cache, keys, key) {
    cache[key] = null
    remove(keys, key)
}

进阶:Map

利用 Map 既能保存键值对,并且能够记住键的原始插入顺序

var LRUCache = function(capacity) {
    this.cache = new Map()
    this.capacity = capacity
}

LRUCache.prototype.get = function(key) {
    if (this.cache.has(key)) {
        // 存在即更新
        let temp = this.cache.get(key)
        this.cache.delete(key)
        this.cache.set(key, temp)
        return temp
    }
    return -1
}

LRUCache.prototype.put = function(key, value) {
    if (this.cache.has(key)) {
        // 存在即更新(删除后加入)
        this.cache.delete(key)
    } else if (this.cache.size >= this.capacity) {
        // 不存在即加入
        // 缓存超过最大值,则移除最近没有使用的
        this.cache.delete(this.cache.keys().next().value)
    }
    this.cache.set(key, value)
}

# 3. 更多解答请看:leetcode146:设计和实现一个LRU(最近最少使用)缓存机制[18]

# 十、阿里算法题:编写一个函数计算多个数组的交集

# 1. 题目

**要求:**输出结果中的每个元素一定是唯一的

# 2. 答案

使用 reducer 函数

var intersection = function(...args) {
    if (args.length === 0) {
    return []
  }
  if (args.length === 1) {
    return args[0]
  }
  return [...new Set(args.reduce((result, arg) => {
    return result.filter(item => arg.includes(item))
  }))]
};

# 3. 更多解答请看:阿里算法题:编写一个函数计算多个数组的交集[19]

# 十一、leetcode21:合并两个有序链表

# 1. 题目

将两个升序链表合并为一个新的升序链表并返回。新链表是通过拼接给定的两个链表的所有节点组成的。

示例:

输入:1->2->4, 1->3->4
输出:1->1->2->3->4->4

# 2. 答案

解答:

确定解题的数据结构: 单链表

确定解题思路: 从链表头开始比较,l1l2 是有序递增的,所以比较 l1.vall2.val的较小值就是合并后链表的最小值,次小值就是小节点的 next.val 与大节点的 val 比较的较小值,依次递归,直到递归到 l1 l2 均为 null

画图实现: 画图帮助理解一下

图片

确定边界条件: 当递归到任意链表为 null ,直接将 next 指向另外的链表即可,不需要继续递归了

代码实现:

function mergeTwoLists(l1, l2) {
    if(l1 === null) {
        return l2
    }
    if(l2 === null) {
        return l1
    }
    if(l1.val <= l2.val) {
        l1.next = mergeTwoLists(l1.next, l2)
        return l1
    } else {
        l2.next = mergeTwoLists(l2.next, l1)
        return l2
    }
}

# 3. 更多解答请看:leetcode21:合并两个有序链表[20]

# 十二、有赞&leetcode141:判断一个单链表是否有环

# 1. 题目

给定一个链表,判断链表中是否有环。

为了表示给定链表中的环,我们使用整数 pos 来表示链表尾连接到链表中的位置(索引从 0开始)。如果 pos-1,则在该链表中没有环。

示例 1:

输入:head = [3,2,0,-4], pos = 1
输出:true
解释:链表中有一个环,其尾部连接到第二个节点。

图片

示例 2:

输入:head = [1,2], pos = 0
输出:true
解释:链表中有一个环,其尾部连接到第一个节点。

图片

示例 3:

输入:head = [1], pos = -1
输出:false
解释:链表中没有环。

图片

进阶:

你能用 O(1)(即,常量)内存解决此问题吗?

# 2. 答案

# 解法一:标志法

给每个已遍历过的节点加标志位,遍历链表,当出现下一个节点已被标志时,则证明单链表有环

var hasCycle = function(head) {
    while(head) {
        if(head.flag) return true
        head.flag = true
        head = head.next
    }
    return false
};

时间复杂度:O(n)

空间复杂度:O(n)

# 解法二:利用 JSON.stringify() 不能序列化含有循环引用的结构
var hasCycle = function(head) {
    try{
        JSON.stringify(head);
        return false;
    }
    catch(err){
        return true;
    }
};

时间复杂度:O(n)

空间复杂度:O(n)

# 解法三:快慢指针(双指针法)

设置快慢两个指针,遍历单链表,快指针一次走两步,慢指针一次走一步,如果单链表中存在环,则快慢指针终会指向同一个节点,否则直到快指针指向 null 时,快慢指针都不可能相遇

var hasCycle = function(head) {
    if(!head || !head.next) {
        return false
    }
    let fast = head.next.next, slow = head
    while(fast !== slow) {
        if(!fast || !fast.next) return false
        fast = fast.next.next
        slow = slow.next
    }
    return true
};

时间复杂度:O(n)

空间复杂度:O(1)

# 3. 更多解答请看:有赞&leetcode141:判断一个单链表是否有环[21]

# 十三、图解leetcode206:反转链表

# 1. 题目

示例:

输入: 1->2->3->4->5->NULL
输出: 5->4->3->2->1->NULL

**进阶:**你可以迭代或递归地反转链表。你能否用两种方法解决这道题?

# 2. 解答

# 解法一:迭代法

解题思路: 将单链表中的每个节点的后继指针指向它的前驱节点即可

画图实现: 画图帮助理解一下

图片

确定边界条件: 当链表为 null 或链表中仅有一个节点时,不需要反转

代码实现:

var reverseList = function(head) {
    if(!head || !head.next) return head
    var prev = null, curr = head
    while(curr) {
        // 用于临时存储 curr 后继节点
        var next = curr.next
        // 反转 curr 的后继指针
        curr.next = prev
        // 变更prev、curr 
        // 待反转节点指向下一个节点 
        prev = curr
        curr = next
    }
    head = prev
    return head
};

时间复杂度:O(n)

空间复杂度:O(1)

# 解法二:尾递归法

解题思路: 从头节点开始,递归反转它的每一个节点,直到 null ,思路和解法一类似

代码实现:

var reverseList = function(head) {
    if(!head || !head.next) return head
    head = reverse(null, head)
    return head
};

var reverse = function(prev, curr) {
    if(!curr) return prev
    var next = curr.next
    curr.next = prev
    return reverse(curr, next)
};

时间复杂度:O(n)

空间复杂度:O(n)

# 解法三:递归法

解题思路: 不断递归反转当前节点 head 的后继节点 next

画图实现: 画图帮助理解一下

图片

代码实现:

var reverseList = function(head) {
    if(!head || !head.next) return head
    var next = head.next
    // 递归反转
    var reverseHead = reverseList(next)
    // 变更指针
    next.next = head
    head.next = null
    return reverseHead
};

时间复杂度:O(n)

空间复杂度:O(n)

# 3. 更多解答请看:图解 leetcode206:反转链表[22]

# 十四、前端算法集训营第一期免费加入啦

欢迎关注「前端瓶子君」,回复「算法」自动加入,从0到1构建完整的数据结构与算法体系!

在这里,瓶子君不仅介绍算法,还将算法与前端各个领域进行结合,包括浏览器、HTTP、V8、React、Vue源码等。

在这里,你可以每天学习一道大厂算法题(阿里、腾讯、百度、字节等等)或 leetcode,瓶子君都会在第二天解答哟!

图片

⬆️ 扫码关注公众号「前端瓶子君」,回复「算法」即可自动加入 👍👍👍

》》面试官都在用的题库,点击学习《《 (opens new window)

# github地址

[1]图解leetcode88:合并两个有序数组: https://github.com/sisterAn/JavaScript-Algorithms/issues/3[2]字节&leetcode1:两数之和: https://github.com/sisterAn/JavaScript-Algorithms/issues/4[3]腾讯:数组扁平化、去重、排序: https://github.com/sisterAn/JavaScript-Algorithms/issues/5[4]leetcode349:给定两个数组,编写一个函数来计算它们的交集: https://github.com/sisterAn/JavaScript-Algorithms/issues/6[5]leetcode146:设计和实现一个LRU(最近最少使用)缓存机制: https://github.com/sisterAn/JavaScript-Algorithms/issues/7[6]阿里算法题:编写一个函数计算多个数组的交集: https://github.com/sisterAn/JavaScript-Algorithms/issues/10[7]leetcode21:合并两个有序链表: https://github.com/sisterAn/JavaScript-Algorithms/issues/11[8]有赞&leetcode141:判断一个单链表是否有环: https://github.com/sisterAn/JavaScript-Algorithms/issues/13[9]图解leetcode206:反转链表: https://github.com/sisterAn/JavaScript-Algorithms/issues/14[10]前端进阶算法1:如何分析、统计算法的执行效率和资源消耗?: https://github.com/sisterAn/JavaScript-Algorithms/issues/1[11]前端进阶算法2:从Chrome V8源码看JavaScript数组(附赠腾讯面试题): https://github.com/sisterAn/JavaScript-Algorithms/issues/2[12]前端进阶算法3:从浏览器缓存淘汰策略和Vue的keep-alive学习LRU算法: https://github.com/sisterAn/JavaScript-Algorithms/issues/9[13]前端进阶算法4:链表原来如此简单(+leetcode刷题): https://github.com/sisterAn/JavaScript-Algorithms/issues/12[14]图解leetcode88:合并两个有序数组: https://github.com/sisterAn/JavaScript-Algorithms/issues/3[15]字节&leetcode1:两数之和: https://github.com/sisterAn/JavaScript-Algorithms/issues/4[16]腾讯:数组扁平化、去重、排序: https://github.com/sisterAn/JavaScript-Algorithms/issues/5[17]leetcode349:给定两个数组,编写一个函数来计算它们的交集: https://github.com/sisterAn/JavaScript-Algorithms/issues/6[18]leetcode146:设计和实现一个LRU(最近最少使用)缓存机制: https://github.com/sisterAn/JavaScript-Algorithms/issues/7[19]阿里算法题:编写一个函数计算多个数组的交集: https://github.com/sisterAn/JavaScript-Algorithms/issues/10[20]leetcode21:合并两个有序链表: https://github.com/sisterAn/JavaScript-Algorithms/issues/11[21]有赞&leetcode141:判断一个单链表是否有环: https://github.com/sisterAn/JavaScript-Algorithms/issues/13[22]图解 leetcode206:反转链表: https://github.com/sisterAn/JavaScript-Algorithms/issues/14

作者

前端瓶子君

赞赏二维码喜欢作者 (opens new window)

1 人喜欢

img

阅读 2488

赞3在看16

上次更新: 11/8/2024, 10:19:43 AM