# 变量和类型

# # (opens new window)导读

变量和类型是学习JavaScript最先接触到的东西,但是往往看起来最简单的东西往往还隐藏着很多你不了解、或者容易犯错的知识,比如下面几个问题:

  • JavaScript中的变量在内存中的具体存储形式是什么?
  • 0.1+0.2为什么不等于0.3?发生小数计算错误的具体原因是什么?
  • Symbol的特点,以及实际应用场景是什么?
  • [] == ![][undefined] == false为什么等于true?代码中何时会发生隐式类型转换?转换的规则是什么?
  • 如何精确的判断变量的类型?

如果你还不能很好的解答上面的问题,那说明你还没有完全掌握这部分的知识,那么请好好阅读下面的文章吧。

本文从底层原理到实际应用详细介绍了JavaScript中的变量和类型相关知识。

# # (opens new window)一、JavaScript数据类型

ECMAScript标准 (opens new window)规定了7种数据类型,其把这7种数据类型又分为两种:原始类型和对象类型。

原始类型

  • Null:只包含一个值:null
  • Undefined:只包含一个值:undefined
  • Boolean:包含两个值:truefalse
  • Number:整数或浮点数,还有一些特殊值(-Infinity+InfinityNaN
  • String:一串表示文本值的字符序列
  • Symbol:一种实例是唯一且不可改变的数据类型

(在es10中加入了第七种原始类型BigInt,现已被最新Chrome支持)

对象类型

  • Object:自己分一类丝毫不过分,除了常用的ObjectArrayFunction等都属于特殊的对象

# # (opens new window)二、为什么区分原始类型和对象类型

# # (opens new window)2.1 不可变性

上面所提到的原始类型,在ECMAScript标准中,它们被定义为primitive values,即原始值,代表值本身是不可被改变的。

以字符串为例,我们在调用操作字符串的方法时,没有任何方法是可以直接改变字符串的:

var str = 'ConardLi';
str.slice(1);
str.substr(1);
str.trim(1);
str.toLowerCase(1);
str[0] = 1;
console.log(str);  // ConardLi

在上面的代码中我们对str调用了几个方法,无一例外,这些方法都在原字符串的基础上产生了一个新字符串,而非直接去改变str,这就印证了字符串的不可变性。

那么,当我们继续调用下面的代码:

str += '6'
console.log(str);  // ConardLi6

你会发现,str的值被改变了,这不就打脸了字符串的不可变性么?其实不然,我们从内存上来理解:

JavaScript中,每一个变量在内存中都需要一个空间来存储。

内存空间又被分为两种,栈内存与堆内存。

栈内存:

  • 存储的值大小固定
  • 空间较小
  • 可以直接操作其保存的变量,运行效率高
  • 由系统自动分配存储空间

JavaScript中的原始类型的值被直接存储在栈中,在变量定义时,栈就为其分配好了内存空间。

img

由于栈中的内存空间的大小是固定的,那么注定了存储在栈中的变量就是不可变的。

在上面的代码中,我们执行了str += '6'的操作,实际上是在栈中又开辟了一块内存空间用于存储'ConardLi6',然后将变量str指向这块空间,所以这并不违背不可变性的特点。

img

# # (opens new window)2.2 引用类型

堆内存:

  • 存储的值大小不定,可动态调整
  • 空间较大,运行效率低
  • 无法直接操作其内部存储,使用引用地址读取
  • 通过代码进行分配空间

相对于上面具有不可变性的原始类型,我习惯把对象称为引用类型,引用类型的值实际存储在堆内存中,它在栈中只存储了一个固定长度的地址,这个地址指向堆内存中的值。

var obj1 = {name:"ConardLi"}
var obj2 = {age:18}
var obj3 = function(){...}
var obj4 = [1,2,3,4,5,6,7,8,9]

img

由于内存是有限的,这些变量不可能一直在内存中占用资源,这里推荐下这篇文章JavaScript中的垃圾回收和内存泄漏 (opens new window),这里告诉你JavaScript是如何进行垃圾回收以及可能会发生内存泄漏的一些场景。

当然,引用类型就不再具有不可变性了,我们可以轻易的改变它们:

obj1.name = "ConardLi6";
obj2.age = 19;
obj4.length = 0;
console.log(obj1); //{name:"ConardLi6"}
console.log(obj2); // {age:19}
console.log(obj4); // []

以数组为例,它的很多方法都可以改变它自身。

  • pop() 删除数组最后一个元素,如果数组为空,则不改变数组,返回undefined,改变原数组,返回被删除的元素
  • push()向数组末尾添加一个或多个元素,改变原数组,返回新数组的长度
  • shift()把数组的第一个元素删除,若空数组,不进行任何操作,返回undefined,改变原数组,返回第一个元素的值
  • unshift()向数组的开头添加一个或多个元素,改变原数组,返回新数组的长度
  • reverse()颠倒数组中元素的顺序,改变原数组,返回该数组
  • sort()对数组元素进行排序,改变原数组,返回该数组
  • splice()从数组中添加/删除项目,改变原数组,返回被删除的元素

下面我们通过几个操作来对比一下原始类型和引用类型的区别:

# # (opens new window)2.3 复制

当我们把一个变量的值复制到另一个变量上时,原始类型和引用类型的表现是不一样的,先来看看原始类型:

var name = 'ConardLi';
var name2 = name;
name2 = 'code秘密花园';
console.log(name); // ConardLi;

img

内存中有一个变量name,值为ConardLi。我们从变量name复制出一个变量name2,此时在内存中创建了一个块新的空间用于存储ConardLi,虽然两者值是相同的,但是两者指向的内存空间完全不同,这两个变量参与任何操作都互不影响。

复制一个引用类型:

var obj = {name:'ConardLi'};
var obj2 = obj;
obj2.name = 'code秘密花园';
console.log(obj.name); // code秘密花园

img

当我们复制引用类型的变量时,实际上复制的是栈中存储的地址,所以复制出来的obj2实际上和obj指向的堆中同一个对象。因此,我们改变其中任何一个变量的值,另一个变量都会受到影响,这就是为什么会有深拷贝和浅拷贝的原因。

# # (opens new window)2.4 比较

当我们在对两个变量进行比较时,不同类型的变量的表现是不同的:

img

var name = 'ConardLi';
var name2 = 'ConardLi';
console.log(name === name2); // true
var obj = {name:'ConardLi'};
var obj2 = {name:'ConardLi'};
console.log(obj === obj2); // false

对于原始类型,比较时会直接比较它们的值,如果值相等,即返回true

对于引用类型,比较时会比较它们的引用地址,虽然两个变量在堆中存储的对象具有的属性值都是相等的,但是它们被存储在了不同的存储空间,因此比较值为false

# # (opens new window)2.5 值传递和引用传递

借助下面的例子,我们先来看一看什么是值传递,什么是引用传递:

let name = 'ConardLi';
function changeValue(name){
  name = 'code秘密花园';
}
changeValue(name);
console.log(name);

执行上面的代码,如果最终打印出来的name'ConardLi',没有改变,说明函数参数传递的是变量的值,即值传递。如果最终打印的是'code秘密花园',函数内部的操作可以改变传入的变量,那么说明函数参数传递的是引用,即引用传递。

很明显,上面的执行结果是'ConardLi',即函数参数仅仅是被传入变量复制给了的一个局部变量,改变这个局部变量不会对外部变量产生影响。

let obj = {name:'ConardLi'};
function changeValue(obj){
  obj.name = 'code秘密花园';
}
changeValue(obj);
console.log(obj.name); // code秘密花园

上面的代码可能让你产生疑惑,是不是参数是引用类型就是引用传递呢?

首先明确一点,ECMAScript中所有的函数的参数都是按值传递的。

同样的,当函数参数是引用类型时,我们同样将参数复制了一个副本到局部变量,只不过复制的这个副本是指向堆内存中的地址而已,我们在函数内部对对象的属性进行操作,实际上和外部变量指向堆内存中的值相同,但是这并不代表着引用传递,下面我们再按一个例子:

let obj = {};
function changeValue(obj){
  obj.name = 'ConardLi';
  obj = {name:'code秘密花园'};
}
changeValue(obj);
console.log(obj.name); // ConardLi

可见,函数参数传递的并不是变量的引用,而是变量拷贝的副本,当变量是原始类型时,这个副本就是值本身,当变量是引用类型时,这个副本是指向堆内存的地址。所以,再次记住:

ECMAScript中所有的函数的参数都是按值传递的。

# # (opens new window)三、分不清的null和undefined

img

在原始类型中,有两个类型NullUndefined,他们都有且仅有一个值,nullundefined,并且他们都代表无和空,我一般这样区分它们:

null

表示被赋值过的对象,刻意把一个对象赋值为null,故意表示其为空,不应有值。

所以对象的某个属性值为null是正常的,null转换为数值时值为0

undefined

表示“缺少值”,即此处应有一个值,但还没有定义,

如果一个对象的某个属性值为undefined,这是不正常的,如obj.name=undefined,我们不应该这样写,应该直接delete obj.name

undefined转为数值时为NaN(非数字值的特殊值)

JavaScript是一门动态类型语言,成员除了表示存在的空值外,还有可能根本就不存在(因为存不存在只在运行期才知道),这就是undefined的意义所在。对于JAVA这种强类型语言,如果有"undefined"这种情况,就会直接编译失败,所以在它不需要一个这样的类型。

# # (opens new window)四、不太熟的Symbol类型

Symbol类型是ES6中新加入的一种原始类型。

每个从Symbol()返回的symbol值都是唯一的。一个symbol值能作为对象属性的标识符;这是该数据类型仅有的目的。

下面来看看Symbol类型具有哪些特性。

# # (opens new window)4.1 Symbol的特性

1.独一无二

直接使用Symbol()创建新的symbol变量,可选用一个字符串用于描述。当参数为对象时,将调用对象的toString()方法。

var sym1 = Symbol();  // Symbol() 
var sym2 = Symbol('ConardLi');  // Symbol(ConardLi)
var sym3 = Symbol('ConardLi');  // Symbol(ConardLi)
var sym4 = Symbol({name:'ConardLi'}); // Symbol([object Object])
console.log(sym2 === sym3);  // false

我们用两个相同的字符串创建两个Symbol变量,它们是不相等的,可见每个Symbol变量都是独一无二的。

如果我们想创造两个相等的Symbol变量,可以使用Symbol.for(key)

使用给定的key搜索现有的symbol,如果找到则返回该symbol。否则将使用给定的key在全局symbol注册表中创建一个新的symbol。

var sym1 = Symbol.for('ConardLi');
var sym2 = Symbol.for('ConardLi');
console.log(sym1 === sym2); // true

2.原始类型

注意是使用Symbol()函数创建symbol变量,并非使用构造函数,使用new操作符会直接报错。

new Symbol(); // Uncaught TypeError: Symbol is not a constructor

我们可以使用typeof运算符判断一个Symbol类型:

typeof Symbol() === 'symbol'
typeof Symbol('ConardLi') === 'symbol'

3.不可枚举

当使用Symbol作为对象属性时,可以保证对象不会出现重名属性,调用for...in不能将其枚举出来,另外调用Object.getOwnPropertyNames、Object.keys()也不能获取Symbol属性。

可以调用Object.getOwnPropertySymbols()用于专门获取Symbol属性。

var obj = {
  name:'ConardLi',
  [Symbol('name2')]:'code秘密花园'
}
Object.getOwnPropertyNames(obj); // ["name"]
Object.keys(obj); // ["name"]
for (var i in obj) {
   console.log(i); // name
}
Object.getOwnPropertySymbols(obj) // [Symbol(name)]

# # (opens new window)4.2 Symbol的应用场景

下面是几个Symbol在程序中的应用场景。

应用一:防止XSS

ReactReactElement对象中,有一个$$typeof属性,它是一个Symbol类型的变量:

var REACT_ELEMENT_TYPE =
  (typeof Symbol === 'function' && Symbol.for && Symbol.for('react.element')) ||
  0xeac7;

ReactElement.isValidElement函数用来判断一个React组件是否是有效的,下面是它的具体实现。

ReactElement.isValidElement = function (object) {
  return typeof object === 'object' && object !== null && object.$$typeof === REACT_ELEMENT_TYPE;
};

可见React渲染时会把没有$$typeof标识,以及规则校验不通过的组件过滤掉。

如果你的服务器有一个漏洞,允许用户存储任意JSON对象, 而客户端代码需要一个字符串,这可能会成为一个问题:

// JSON
let expectedTextButGotJSON = {
  type: 'div',
  props: {
    dangerouslySetInnerHTML: {
      __html: '/* put your exploit here */'
    },
  },
};
let message = { text: expectedTextButGotJSON };
<p>
  {message.text}
</p>

JSON中不能存储Symbol类型的变量,这就是防止XSS的一种手段。

应用二:私有属性

借助Symbol类型的不可枚举,我们可以在类中模拟私有属性,控制变量读写:

const privateField = Symbol();
class myClass {
  constructor(){
    this[privateField] = 'ConardLi';
  }
  getField(){
    return this[privateField];
  }
  setField(val){
    this[privateField] = val;
  }
}

应用三:防止属性污染

在某些情况下,我们可能要为对象添加一个属性,此时就有可能造成属性覆盖,用Symbol作为对象属性可以保证永远不会出现同名属性。

例如下面的场景,我们模拟实现一个call方法:

    Function.prototype.myCall = function (context) {
      if (typeof this !== 'function') {
        return undefined; // 用于防止 Function.prototype.myCall() 直接调用
      }
      context = context || window;
      const fn = Symbol();
      context[fn] = this;
      const args = [...arguments].slice(1);
      const result = context[fn](...args);
      delete context[fn];
      return result;
    }

我们需要在某个对象上临时调用一个方法,又不能造成属性污染,Symbol是一个很好的选择。

# # (opens new window)五、不老实的Number类型

为什么说Number类型不老实呢,相信大家都多多少少的在开发中遇到过小数计算不精确的问题,比如0.1+0.2!==0.3,下面我们来追本溯源,看看为什么会出现这种现象,以及该如何避免。

下面是我实现的一个简单的函数,用于判断两个小数进行加法运算是否精确:

    function judgeFloat(n, m) {
      const binaryN = n.toString(2);
      const binaryM = m.toString(2);
      console.log(`${n}的二进制是    ${binaryN}`);
      console.log(`${m}的二进制是    ${binaryM}`);
      const MN = m + n;
      const accuracyMN = (m * 100 + n * 100) / 100;
      const binaryMN = MN.toString(2);
      const accuracyBinaryMN = accuracyMN.toString(2);
      console.log(`${n}+${m}的二进制是${binaryMN}`);
      console.log(`${accuracyMN}的二进制是    ${accuracyBinaryMN}`);
      console.log(`${n}+${m}的二进制再转成十进制是${to10(binaryMN)}`);
      console.log(`${accuracyMN}的二进制是再转成十进制是${to10(accuracyBinaryMN)}`);
      console.log(`${n}+${m}在js中计算是${(to10(binaryMN) === to10(accuracyBinaryMN)) ? '' : '不'}准确的`);
    }
    function to10(n) {
      const pre = (n.split('.')[0] - 0).toString(2);
      const arr = n.split('.')[1].split('');
      let i = 0;
      let result = 0;
      while (i < arr.length) {
        result += arr[i] * Math.pow(2, -(i + 1));
        i++;
      }
      return result;
    }
    judgeFloat(0.1, 0.2);
    judgeFloat(0.6, 0.7);

image

# # (opens new window)5.1 精度丢失

计算机中所有的数据都是以二进制存储的,所以在计算时计算机要把数据先转换成二进制进行计算,然后在把计算结果转换成十进制

由上面的代码不难看出,在计算0.1+0.2时,二进制计算发生了精度丢失,导致再转换成十进制后和预计的结果不符。

# # (opens new window)5.2 对结果的分析—更多的问题

0.10.2的二进制都是以1100无限循环的小数,下面逐个来看JS帮我们计算所得的结果:

0.1的二进制

0.0001100110011001100110011001100110011001100110011001101

0.2的二进制

0.001100110011001100110011001100110011001100110011001101

理论上讲,由上面的结果相加应该:

0.0100110011001100110011001100110011001100110011001100111

实际JS计算得到的0.1+0.2的二进制

0.0100110011001100110011001100110011001100110011001101

看到这里你可能会产生更多的问题:

为什么 js计算出的 0.1的二进制 是这么多位而不是更多位???

为什么 js计算的(0.1+0.2)的二进制和我们自己计算的(0.1+0.2)的二进制结果不一样呢???

为什么 0.1的二进制 + 0.2的二进制 != 0.3的二进制???

# # (opens new window)5.3 js对二进制小数的存储方式

小数的二进制大多数都是无限循环的,JavaScript是怎么来存储他们的呢?

ECMAScript®语言规范 (opens new window)中可以看到,ECMAScript中的Number类型遵循IEEE 754标准。使用64位固定长度来表示。

事实上有很多语言的数字类型都遵循这个标准,例如JAVA,所以很多语言同样有着上面同样的问题。

所以下次遇到这种问题不要上来就喷JavaScript...

有兴趣可以看看下这个网站http://0.30000000000000004.com/,是的,你没看错,就是http://0.30000000000000004.com/!!!

# # (opens new window)5.4 IEEE 754

IEEE754标准包含一组实数的二进制表示法。它有三部分组成:

  • 符号位
  • 指数位
  • 尾数位

三种精度的浮点数各个部分位数如下:

image

JavaScript使用的是64位双精度浮点数编码,所以它的符号位1位,指数位占11位,尾数位占52位。

下面我们在理解下什么是符号位指数位尾数位,以0.1为例:

它的二进制为:0.0001100110011001100...

为了节省存储空间,在计算机中它是以科学计数法表示的,也就是

1.100110011001100... X 2-4

如果这里不好理解可以想一下十进制的数:

1100的科学计数法为11 X 102

所以:

image

符号位就是标识正负的,1表示0表示

指数位存储科学计数法的指数;

尾数位存储科学计数法后的有效数字;

所以我们通常看到的二进制,其实是计算机实际存储的尾数位。

# # (opens new window)5.5 js中的toString(2)

由于尾数位只能存储52个数字,这就能解释toString(2)的执行结果了:

如果计算机没有存储空间的限制,那么0.1二进制应该是:

0.00011001100110011001100110011001100110011001100110011001...

科学计数法尾数位

1.1001100110011001100110011001100110011001100110011001...

但是由于限制,有效数字第53位及以后的数字是不能存储的,它遵循,如果是1就向前一位进1,如果是0就舍弃的原则。

0.1的二进制科学计数法第53位是1,所以就有了下面的结果:

0.0001100110011001100110011001100110011001100110011001101

0.2有着同样的问题,其实正是由于这样的存储,在这里有了精度丢失,导致了0.1+0.2!=0.3

事实上有着同样精度问题的计算还有很多,我们无法把他们都记下来,所以当程序中有数字计算时,我们最好用工具库来帮助我们解决,下面是两个推荐使用的开源库:

# # (opens new window)5.6 JavaScript能表示的最大数字

由与IEEE 754双精度64位规范的限制:

指数位能表示的最大数字:1023(十进制)

尾数位能表达的最大数字即尾数位都位1的情况

所以JavaScript能表示的最大数字即位

1.111...X 21023 这个结果转换成十进制是1.7976931348623157e+308,这个结果即为Number.MAX_VALUE

# # (opens new window)5.7 最大安全数字

JavaScript中Number.MAX_SAFE_INTEGER表示最大安全数字,计算结果是9007199254740991,即在这个数范围内不会出现精度丢失(小数除外),这个数实际上是1.111...X 252。

我们同样可以用一些开源库来处理大整数:

其实官方也考虑到了这个问题,bigInt类型在es10中被提出,现在Chrome中已经可以使用,使用bigInt可以操作超过最大安全数字的数字。

文中如有错误,欢迎在评论区指正,如果这篇文章帮助到了你,欢迎点赞和关注。

Last Updated: 8/4/2019, 10:35:29 AM

文章目录 (opens new window)你真的掌握变量和类型了吗(二)类型转换 (opens new window)

上次更新: 11/8/2024, 10:19:43 AM